Pile Design to BS EN 1997-1:2004 (EC7) and the National Annex

Chris Raison BEng MSc CEng MICE MASCE
Raison Foster Associates

• Tel: 024 7641 0338
• Mob: 07974 005990
• E-Mail: chris@raisonfoster.co.uk
• Address: 7 Riverford Croft
 Coventry
 CV4 7HB
• Web Site: www.raisonfosterassociates.co.uk
What am I going to talk about?

- Concentrate on Practical Applications
- Brief Review of the Traditional Design Approach
- What is Different in EC7?
- EC7 – Geotechnical Design: Part 1: Chapter 7 – Piles
- UK National Annex: Model Factor
- EC7 Design Method and Partial Factors
What am I going to talk about?

- Other Aspects of Pile Design
 - Negative Shaft Friction
 - Horizontal Load
 - Structural Design
- Worked Example for a Site In Suffolk
- Conclusions
Some History & Background

- **1974-1975:**
 First proposal to develop international codes

- **1990:**
 CEN (European Committee for Standardisation) set up

- **2004:**
 BS EN 1997-1 (Eurocode 7, Part 1) and its UK National Annex were published
Some History & Background

- Other Eurocodes important for piling:
 BS EN 1997-1 – Geotechnical Design
 BS EN 1990 – Basis of Structural Design
 BS EN 1991-1-1 – Actions on Structures
 BS EN 1992-1-1 – Design of Concrete Structures
 Plus Execution Codes
Some History & Background

- April 2010:
 - Most geotechnical standards and Codes of Practice were withdrawn
 - Eurocodes became the current standards
 - The use of Eurocodes mandatory on public sector work

- October 2013:
 - Part A of Building Regulations updated to refer to Eurocodes (England)
Some History & Background

- June 2015:
 - British Standards re-issued:
 - BS8004 – Foundations
 - BS8002 – Retaining Structures
 - BS8081 – Grouted Anchors
 - Now fully compliant with Eurocodes

[It was not originally intended to re-write these standards!]
Some History & Background

- Today:
 All public sector and most private sector construction schemes are designed to Eurocodes
 The UK piling industry has taken on board the use of Eurocodes but with some reluctance
Behaviour of Piles

- End Bearing Pile on Rock
- Friction Pile
- Tension Pile
- Settling Soil (Down Drag)
- Lateral Load
Piling Methods – Driven
Piling Methods – Rotary Bored or CFA
Traditional Pile Design to BS 8004

- In the past, piles were driven to a refusal
- Self-evident that the pile resistance is proportional to the drive energy
- Every driven pile has some sort of test – drive blows
- But this does not work for bored or drilled piles as there is no feedback from installation
Traditional Pile Design to BS 8004

- Static load testing is very attractive for design
- But testing can be uneconomic and time consuming:
 - Complex variable ground conditions
 - Variable loading
 - Difficult to deal with NSF
 - Difficult to deal with changes to vertical stress
- Pile designers therefore looked at calculation based on theoretical soil mechanics
Traditional Pile Design to BS 8004

Layer 1

Layer 2

Layer 3

Ultimate pile resistance

\[Q_u = \sum Q_s + Q_b \]
Traditional Pile Design to BS 8004

- The usual approach is to divide the ground into layers and assign ground parameters to each layer
 - For bearing capacity, this is just ϕ', c', Cu and UCS
 - From these we get Nc, Ny and Nq for bearing capacity
Traditional Pile Design to BS 8004

- Basic calculation method:

 Ultimate Capacity \(Q_{ult} = Q_s + Q_b \)
 Shaft Capacity \(Q_s = q_s A_s \)
 Base Capacity \(Q_b = q_b A_b \)
Traditional Pile Design to BS 8004

- Factor of Safety varied between 2.0 and 3.0 for compression loads and ≥ 3.0 for tension
- Actual FoS dependent on quality of GI, prior knowledge of ground conditions and whether preliminary non-working load tests or contract proof load tests were carried out

\[
\text{Applied Load} \leq \frac{\text{Ultimate Capacity}}{\text{FoS}}
\]
Pile Design to EC7

- So what is different?
- EC7 method is a Limit State Design method:
 - Ultimate Limit State (ULS)
 - States associated with collapse, structural failure, excessive deformation or loss of stability of the whole of the structure or any part of it
 - Serviceability Limit State (SLS)
 - States that correspond to conditions beyond which specified service requirements are no longer met
Some Ultimate Limit States for Piles

- Bearing capacity failure (compression)
- Pull-out failure (tension)
- Rotation (lateral load)
- Structural failure by crushing (compression)
- Structural failure in shear (lateral load)
- Structural failure at pile cap connection
- Structural failure in bending (lateral load)
- Structural failure by buckling (compression)
Some Serviceability Limit States

- Settlement
- Tilting
- Cracking
- Uneven floor settlement
EC7 Limit States

- EC7 Adopts five distinct ultimate limit states:
 - EQU – Loss of equilibrium (tilt or rotation)
 - STR – Internal failure or excessive deformation
 [Strength of structural material is significant]
 - GEO – Failure or excessive deformation of the ground
 [Strength of soil or rock is significant]
 - UPL – Uplift or buoyancy
 - HYD – Hydraulic heave, erosion or piping
- STR and GEO most important for pile design
EC7 Design Approach

- Separation of ULS and SLS condition
- Permanent and variable actions
- Favourable and unfavourable actions
- Use of characteristic ground properties
- Use of several partial factors
- Partial factors avoid failure but not necessarily movement
EC7 Design Approach

- Basic inequality to be checked:

 \[E_d \leq R_d \]

- \(E_d \) is the design value of the effect of all the actions

- \(R_d \) is the design value of the corresponding resistance of the ground or structure

- For pile design, this inequality compares the design action \(F_d \) (usually load) against the design resistance \(R_d \)

 \[F_d \leq R_d \]
EC7 Design Approach

- Design values of E_d, R_d are obtained by applying sets of partial factors to their characteristic values, E_k, R_k
- EC7 allows three design approaches which use different partial factor sets
- Each country specifies its design approach in its NA
 - DA1: UK, Portugal
 - DA2: France, Germany, Poland, Spain
 - DA3: Denmark & Netherlands
- Some countries allow more than one approach (Ireland, Italy)
UK National Annex

- UK has adopted Design Approach 1 - DA1
- This requires two calculations:
 - A1 + R1 + M1 Combination 1
 - R4 + A2 + M1/M2 Combination 2
 (Use M1 for calculating resistances and M2 for unfavourable actions such as NSF)
- For Combination 1, partial factors > 1.0 are applied to the actions only - this does not usually control pile length
- For Combination 2, partial factors > 1.0 are applied to resistances with smaller factors applied to variable actions
Design Actions F_d

- F_d is the design action
 \[F_d = \gamma_F F_{\text{rep}} \]
- F_{rep} is the representative action (usually load)
 \[F_{\text{rep}} = G_k + \psi Q_k + A_k \]
 \[\psi = 1.0 \text{ for leading action or } = \psi_0, \psi_1 \text{ or } \psi_2 \]
 - G_k is the characteristic permanent action
 - Q_k is the characteristic variable action
 - A_k is the characteristic accidental action
 - ψ is the factor for combination of variable actions
Effect of Actions E_d

- E_d is the design value of the effect of all the actions:
 \[E_d = E \left\{ \gamma_F F_{\text{rep}} \frac{X_k}{\gamma_m} a_d \right\} \]

- F_{rep} is the representative action (usually load)
- X_k is the characteristic value of the material property
- a_d is the design value of a geometrical property
- γ_F and γ_m are relevant partial factors
Effect of Actions E_d

- Design values:

$$F_d = \gamma_F F_{rep} \quad X_d = \frac{X_k}{\gamma_m} \quad a_d = a_{nom} + \Delta a$$

- F_{rep} is the representative action (usually load)
- X_k is the characteristic value of the material property
- a_d is the design value of a geometrical property
- γ_F and γ_m are relevant partial factors
UK National Annex

- Local requirements specified in the UK National Annex
- In the UK this involves two separate calculations with different combinations of partial factors:
 - Combination 1: Partial factors applied to actions; Ground strengths and resistances are not factored
 - Combination 2: Partial factors applied to ground strengths, resistances and variable actions; Permanent actions are unfactored
- **NOTE** for pile design, we factor ground resistances and not ground strengths
Partial Factors on Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>UK NA Factor Set</th>
<th>EC7 Factor Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>Permanent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfavourable</td>
<td>1.35</td>
<td>1.0</td>
</tr>
<tr>
<td>Favourable</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfavourable</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Favourable</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. Factors can be applied to Actions or the Effect of Actions.
2. Factors given above are for buildings which remain unchanged from EC7 values.
3. Combination factors for actions that can exist simultaneously are given in the UK NA to BS EN 1990.
4. There are a wider range of factors for bridges.
Pile Design to EC7

- Static load tests
- Ground tests (using direct correlations), e.g. CPT or PMT
- Dynamic impact tests, e.g. CAPWAP
- Statistical corrections required to account for number of test results (correlation factor)
- EC7 concentrates on pile design by testing.
- There is little reference to design by calculation – the normal UK approach!
Pile Design Methods Covered by EC7

<table>
<thead>
<tr>
<th>Design method</th>
<th>Information used</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
<td>Static load tests</td>
<td>Validity must be demonstrated by calculation or other means</td>
</tr>
<tr>
<td></td>
<td>Ground test results</td>
<td>Validity must be demonstrated by static load tests in comparable situations</td>
</tr>
<tr>
<td></td>
<td>Dynamic load tests</td>
<td></td>
</tr>
<tr>
<td>Calculation</td>
<td>Empirical or analytical calculation methods</td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>Observed performance of comparable piled foundations</td>
<td>Must be supported by the results of site investigation and ground testing</td>
</tr>
</tbody>
</table>
Pile Design to EC7

- The most common method for design method in the UK is design by calculation
- Pile load testing is used mostly for verification of the design
- Ground tests are used to select soil properties
Calculation Based on Soil Parameters

- Design can be based on measured φ', c', Cu and UCS usually from laboratory testing of undisturbed samples

- More common to use empirical relationships between insitu CPT, SPT, PMT and other measurements to estimate these parameters

- We can measure G, Eu and E' in the laboratory, but again it is more common to use empirical relationships
Ground Characterisation

- EC7 says a lot about determining characteristic or representative soil properties
- Cautious estimate affecting the occurrence of the limit state
 - Similar to BS 8002 and CIRIA 104
 - Most engineers already adopt cautious estimates
 - Engineering judgement required
 - Statistics can be applied, but is difficult because of the usual limited number of samples and test data
 - For pile design, not a great deal of difference between soil parameters for EC7 design compared to BS 8004 design
London Clay, cohesion v depth

Undrained cohesion, c_u (kPa)

Reduced level (m)

REGRESSION

CAUTIOUS ESTIMATE (?)
Calculation Based on Soil Parameters

- Design is based on fundamental geotechnical ground parameters such as c', φ', G, E', but could also include Cu, UCS and Eu for clays and rocks
- These extend into derived parameters such as Nc, Ny and Nq for bearing capacity, Kq and Kc factors for horizontal loads on piles or Ka, Kac, Kp and Kpc for ground retention
- But we also need some empirical factors such as Ks for granular, α for clay, β for Chalk
So how do we estimate pile shaft friction and end bearing from ground parameters?

- **Effective Stress Approach**

 Granular Soils

 \[q_s = \sigma'_v \ k_s \ \tan \delta \]

- **Total Stress Approach**

 Cohesive or Rock (Weak Mudstone)

 \[q_s = \alpha \ c_u \]
Standard Penetration Test – Granular Soils

Diagrams from Equipe Group Geotechnica

SPT undergoing calibration
Standard Penetration Test – Granular Soils

(N)_60

(N1)_60

Relative density Dr or c’ \(\phi' \)

Es

\((N1)_60 = (N)_60 \times C_N \)
Standard Penetration Test – Clay Soils

\[C_u = f_1 \times (N)_{60} \]

\[f_1 = 4.0 \text{ to } 6.0 \]

Figure 19: Variation of \(f_1 = \frac{c_u}{N_{60}} \) with plasticity index for overconsolidated clays (after Stroud and Butler, 1975)
Laboratory – Undrained Shear Strength

Triaxial Testing

![Triaxial Testing Experiment](image)

![Graph of Dewatering Stress vs. Strain](image)

![Graph of Shear Stress vs. Normal Stress](image)
Insitu Testing – CPT

Cu in clays
Φ’ in granular soils
GI Using CPT

\[C_u = \frac{q_c}{N_k} \]

\(N_k = 15 \) to 30

\(N_k = 20 \) taken for Glacial Till in this example
Pile Shaft Friction

- **Beta Method**
 Soft Soils or Chalk
 \[q_s = \sigma'_v \beta \quad \beta = k_s \tan \delta \quad \beta = 0.45 \text{ to } 0.80 \text{ for Chalk} \]

- **UCS Method**
 Sandstone, Limestone or Strong Mudstone
 \[q_s = a \text{ UCS}^b \quad a = 200 \rightarrow 450 \quad b = 0.4 \rightarrow 0.6 \]
Rock Testing

Point Load Testing

Uniaxial Compression Test

On site Rock Core Point Load testing
Pile End Bearing

- Effective Stress Approach
 Granular
 \[q_b = \sigma'_v N_q \]

- Total Stress Approach
 Cohesive or Rock (Weak Mudstone)
 \[q_b = c_u N_c \]
Pile End Bearing

Berezantzev Bearing Capacity
Nq versus ϕ'

Brinch Hansen Bearing Capacity
Nq versus ϕ'

Brinch Hansen Bearing Capacity
Scdc versus Depth/Diameter Ratio
Pile End Bearing

- SPT Method
 Chalk

 \[q_b = 200 \text{ to } 300 \times \text{SPT N} \]

- UCS Method
 Sandstone, Limestone or Strong Mudstone

 \[q_b = \frac{\text{UCS}}{2} N_c \]
Design Soil Parameters

- Design values obtained by dividing the characteristic or representative property by a partial factor

 \[X_d = \frac{X_k}{\gamma_m} \]

- Usual properties to be factored are strength [but stiffness may need to be factored for horizontal load design]

- Either effective stress strength, \(c' \) and \(\varphi' \), or undrained shear strength \(c_u \), or unconfined compressive strength UCS for rocks

- For pile design to the UK National Annex, factored design soil parameters are not used except for negative shaft friction
Partial Factors on Soil Parameters

<table>
<thead>
<tr>
<th>Soil Property</th>
<th>UK NA Factor Set</th>
<th>EC7 Factor Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>Friction Angle (\tan \phi')</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>Effective Cohesion (c')</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>Undrained Shear Strength (C_u)</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Unconfined Strength (UCS)</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Unit Weight (\gamma)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

UK NA gives no factor for unit weight so presume 1.0; other factors remain unchanged.

For pile design to the UK National Annex, factored design soil parameters are not used except for negative shaft friction.
Pile Design to EC7 Based on Resistances

- For pile design, it is necessary to compare the design action F_d (usually load) against the design resistance R_d
 \[F_d \leq R_d \]
- But note that this is now in terms of compression or tension load and compression or tension resistance:
 \[F_{c;d} \leq R_{c;d} \quad F_{t;d} \leq R_{t;d} \]
- As is usual, the design resistance $R_{c;d}$ can be assumed to be the sum of the end bearing and shaft design resistances:
 \[R_{c;d} = R_{b;d} + R_{s;d} \]
Pile Design to EC7 Based on Resistances

- The design resistances $R_{c;d}$ or $R_{t;d}$ are obtained from the characteristic end bearing and shaft friction by using partial resistance factors.

\[
R_{c;d} = \left[\frac{R_{b;k}}{\gamma_b} + \frac{R_{s;k}}{\gamma_s} \right] \quad \text{or} \quad \left[\frac{R_{c;k}}{\gamma_t} \right] \\
R_{c;k} = R_{b;k} + R_{s;k}
\]
Pile Design to EC7 Based on Resistances

- The characteristic end bearing and shaft friction can be computed using existing and recognisable methods either by:
 - Calculation
 - Static load testing
 - Dynamic load testing
 - Correlation with CPT or other insitu ground testing
 - Design charts based on experience
 (e.g. EA-Pfähle used in Germany)
Pile Design by Calculation

- The characteristic base resistance and shaft resistance can be calculated from the characteristic end bearing and shaft friction stresses as follows:

\[
R_{b;k} = \frac{A_b \cdot q_{b;k}}{\gamma_{Rd}} \quad \quad R_{s;k} = \frac{\sum A_{s;i} \cdot q_{s;i,k}}{\gamma_{Rd}}
\]

- These are similar to the approach used for BS 8004 but include an additional model factor \(\gamma_{Rd} \) to ‘correct’ the partial resistance factors (applied to the characteristic resistances to obtain the design resistance \(R_{c;d} \)).
Pile Load Testing
Pile Load Tests – Preliminary – To ULS

- Load test to ULS allows a lower model factor γ_{Rd} to be used

Resistance at 10% diameter 5,200kN
Pile Shaft Friction

- Effective Stress Approach – Granular
 \[q_s = \sigma'_v \ k_s \ \tan \delta \]

- Total Stress Approach – Cohesive or Rock (Weak Mudstone)
 \[q_s = \alpha \ c_u \]

- Beta Method – Soft Soils or Chalk
 \[q_s = \sigma'_v \ \beta \quad \beta = k_s \ \tan \delta \quad \beta = 0.45 \text{ to } 0.80 \text{ for Chalk} \]

- UCS Method – Sandstone, Limestone or Strong Mudstone
 \[q_s = a \ \text{UCS}^b \quad a = 200 \rightarrow 450 \quad b = 0.4 \rightarrow 0.6 \]
Pile End Bearing

- Effective Stress Approach – Granular
 \[q_b = \sigma'_v N_q \]

- Total Stress Approach – Cohesive or Rock (Weak Mudstone)
 \[q_b = c_u N_c \]

- SPT Method – Chalk
 \[q_b = 200 \text{ to } 300 \times \text{SPT N} \]

- UCS Method – Sandstone, Limestone or Strong Mudstone
 \[q_b = \frac{\text{UCS}}{2} N_c \]
Partial Resistance Factors

- The design resistance R_d is obtained from the characteristic end bearing and shaft friction by using partial resistance factors

$$R_{c,d} = \left[\frac{R_{b;k}}{\gamma_b} + \frac{R_{s;k}}{\gamma_s} \right] \text{ or } \left[\frac{R_{c;k}}{\gamma_t} \right]$$

- The partial resistance factors in the UK National Annex have been modified to take account of the type of pile and whether the serviceability behaviour is to be determined either by load test or a rigorous and reliable calculation.
Partial Resistance Factors for Driven Piles

<table>
<thead>
<tr>
<th>Component</th>
<th>UK NA Factor Set</th>
<th>EC7 Factor Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R4 (No SLS)</td>
</tr>
<tr>
<td>Base</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Shaft</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Tension</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Main differences for resistance factors relate to:
1. Factor set R4 where different values depend on whether SLS behaviour is verified or not (test or calculation).
2. Model factor to be applied to ground properties to derive characteristic values or directly to the calculated shaft or end bearing capacities.
3. Model factor 1.4, but can be reduced to 1.2 if a load test is completed to calculated unfactored ultimate resistance (ULS check).
Partial Resistance Factors for Bored Piles

<table>
<thead>
<tr>
<th>Component</th>
<th>UK NA Factor Set</th>
<th>EC7 Factor Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R4 (No SLS)</td>
</tr>
<tr>
<td>Base</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Shaft</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tension</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Main differences for resistance factors relate to:
1. Factor set R4 where different values depend on whether SLS behaviour is verified or not (test or calculation).
2. Model factor to be applied to ground properties to derive characteristic values or directly to the calculated shaft or end bearing capacities.
3. Model factor 1.4, but can be reduced to 1.2 if a load test is completed to calculated unfactored ultimate resistance (ULS check).
Partial Resistance Factors for CFA Piles

<table>
<thead>
<tr>
<th>Component</th>
<th>UK NA Factor Set</th>
<th>EC7 Factor Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R4 (No SLS)</td>
</tr>
<tr>
<td>Base</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Shaft</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tension</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Main differences for resistance factors relate to:
1. Factor set R4 where different values depend on whether SLS behaviour is verified or not (test or calculation).
2. Model factor to be applied to ground properties to derive characteristic values or directly to the calculated shaft or end bearing capacities.
3. Model factor 1.4, but can be reduced to 1.2 if a load test is completed to calculated unfactored ultimate resistance (ULS check).
Equivalent Lumped FoS

<table>
<thead>
<tr>
<th>Pile Type</th>
<th>Actions</th>
<th>Resistance Factors</th>
<th>Model Factor</th>
<th>Lumped FoS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A2</td>
<td>R4 (No SLS)</td>
<td>R4 (SLS)</td>
<td></td>
</tr>
<tr>
<td>Driven End Bearing</td>
<td>1.1</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.7/1.5</td>
<td>1.5/1.3</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Bored Shaft Friction</td>
<td>1.1</td>
<td>1.6</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

1. Partial factor on actions assumes 70% permanent and 30% variable.
2. British Standard BS 8004 lumped FoS ranged from 2.0 to 3.0.
3. Model factor 1.2 requires load test to be completed to unfactored ultimate resistance.
4. Lower value for resistance factors dependent on SLS behaviour being verified (by load test or reliable calculation).
The design resistance $R_{c;d}$ can also be obtained directly from static load testing by applying correlation factors ξ and the same partial resistance factors γ given above:

$$R_{c;d} = \left[\frac{R_{c;k}}{\gamma_t} \right]$$

The characteristic resistance is obtained from the static load test data using the following:

$$R_{c;k} = \min \left[\frac{\text{Mean } R_{c;m}}{\xi_1} \right] \text{ or } \left[\frac{\text{Minimum } R_{c;m}}{\xi_2} \right]$$
Pile Design From Static Load Tests

- Values for ξ_1 and ξ_2 depend on the number of static load tests with values decreasing as the number of load tests increases.

| Static Pile Load Tests (n = number of tested piles) |
|-----------------|---|---|---|---|---|
| ξ for n = | 1 | 2 | 3 | 4 | ≥ 5 |
| ξ_1 | 1.55 | 1.47 | 1.42 | 1.38 | 1.35 |
| ξ_2 | 1.55 | 1.35 | 1.23 | 1.15 | 1.08 |

For stiff & strong structures use $\frac{\xi}{1.1} \leq 1.0$ for redistribution.
Pile Design From Dynamic Impact Tests

- The characteristic resistance can also be obtained from dynamic impact test data using the following similar relationship:

\[
R_{c,k} = \min \left(\frac{\text{Mean } R_{c;m}}{\xi_5} \right) \text{ or } \left(\frac{\text{Minimum } R_{c;m}}{\xi_6} \right)
\]

- An additional model factor \(\gamma_{Rd} \) is also required:
 - 0.85 when using signal matching (CAPWAP)
 - 1.10 when the test includes pile head displacement
 - 1.20 if no measurement of pile head displacement
Pile Design From Dynamic Impact Tests

- Values for ξ_5 and ξ_6 depend on the number of dynamic impact tests with values decreasing as the number of tests increases

<table>
<thead>
<tr>
<th>Dynamic Impact Tests (n = number of tested piles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ for $n =$</td>
</tr>
<tr>
<td>ξ_5</td>
</tr>
<tr>
<td>ξ_6</td>
</tr>
</tbody>
</table>

An additional model factor γ_{Rd} is also required:
- 0.85 when using signal matching (CAPWAP)
- 1.10 when the test includes pile head displacement
- 1.20 if no measurement of pile head displacement
Pile Design From Ground Test Results

- The characteristic resistance can also be obtained from empirical relationships with ground test results (such as CPT) using the following similar relationship:

 \[R_{c,k} = \text{Min} \left(\frac{\text{Mean } R_{c;\text{cal}}}{\xi_3} \right) \text{ or } \left[\frac{\text{Minimum } R_{c;\text{cal}}}{\xi_4} \right] \]

- Values for \(\xi_3 \) and \(\xi_4 \) depend on the number of ground test results with values decreasing as the number of profiles increases.
Correlation Factors for Ground Tests

<table>
<thead>
<tr>
<th>Ground Test Results (n = number of profiles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi) for n =</td>
</tr>
<tr>
<td>(\xi_3)</td>
</tr>
<tr>
<td>(\xi_4)</td>
</tr>
</tbody>
</table>

For stiff & strong structures use \(\frac{\xi}{1.1} \leq 1.0 \) for redistribution

- EC7 requires that the method used to determine the pile characteristic resistance from ground test results should be established from pile load tests and comparable experience.
- These correlation factors were intended to be used with CPT profiles or pressuremeter data.
- However, EC7 includes the ‘alternative procedure’ or calculation method within section 7.6.2.3 covering ground test results.
Pile Design From Design Charts [Experience]

- The characteristic resistance can also be obtained from published design charts (such as those given in EA-Pfähle used in Germany)
- Design charts based on a statistical analysis of static pile load tests
Pile Design From Design Charts [Experience]

- Tables give characteristic shaft friction and end bearing for different pile types and ground conditions correlated to CPT cone resistance or undrained shear strength.
- Charts give 10% or 50% percentiles. EA-Pfähle recommends using the 10% value.
Pile Design From Design Charts [Experience]

in non-cohesive soils

<table>
<thead>
<tr>
<th>settlement of pile head s/Dₙ bzw. s/Dₚ</th>
<th>ultimate base resistance qₑ [kN/m²] for a mean tip resistance qₐ of a CPT [MN/m²]</th>
<th>ultimate skin friction qₑ1,k [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[7.5] [15] [25]</td>
<td>[7.5] [15] [≥ 25]</td>
</tr>
<tr>
<td>0.02</td>
<td>550 – 800 1,050 – 1,400 1,750 – 2,300</td>
<td>55 – 80 105 – 140 130 – 170</td>
</tr>
<tr>
<td>0.03</td>
<td>700 – 1,050 1,350 – 1,800 2,250 – 2,950</td>
<td></td>
</tr>
<tr>
<td>0.10 (= sₚ)</td>
<td>1,600 – 2,300 3,000 – 4,000 4,000 – 5,300</td>
<td></td>
</tr>
</tbody>
</table>

Intermediary values can be interpolated linearly.

For bored piles with foot enlargement values to be reduced to 75 %.

in cohesive soils

<table>
<thead>
<tr>
<th>settlement of pile head s/Dₙ bzw. s/Dₚ</th>
<th>ultimate base resistance qₑ [kN/m²] undrained shear strength cₜ,k [kN/m²]</th>
<th>ultimate skin friction qₑ1,k [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[100] [150] [250]</td>
<td>[60] [150] [≥ 250]</td>
</tr>
<tr>
<td>0.02</td>
<td>350 – 450 600 – 750 950 – 1,200</td>
<td>30 – 40 50 – 65 65 – 85</td>
</tr>
<tr>
<td>0.03</td>
<td>450 – 550 700 – 900 1,200 – 1,450</td>
<td></td>
</tr>
<tr>
<td>0.10 (= sₚ)</td>
<td>800 – 1,000 1,200 – 1,500 1,600 – 2,000</td>
<td></td>
</tr>
</tbody>
</table>

Intermediary values can be interpolated linearly.

For bored piles with foot enlargement values to be reduced to 75 %.

Tables 5.12 to 5.15 for Bored Piles – Recommended 10% percentiles given in green
Pile Settlement

- EC7 has been written with much more emphasis on SLS behaviour regarding pile settlement and horizontal movement.
- EC7 adopts lower partial factors but on the understanding that movements are considered.
- The partial resistance factors in the UK National Annex have therefore been modified to take account of the type of pile and whether the serviceability behaviour is to be determined either by load test or a rigorous and reliable calculation.
Pile Settlement

- Empirical method: Pile settlements are dependent on the stiffness properties of the founding soil or rock, the pile geometry, and the mechanism of load transfer to the ground.

- Typically:
 - Shaft friction is mobilised at a movement equal to about 1% of the pile diameter
 - End bearing is mobilised at a movement equal to about 10% of the pile diameter

- Good for understanding behaviour but not rigorous
Pile Settlement

LOAD (kN)

TOTAL

SHAFT

BASE

WORKING LOAD

SETTLEMENT (mm)

0

1250

1000

750

500

250

0

5

10

15

20

25

30

35

40

45

50

1% Diam

10% Diam
Pile Settlement

![Diagram showing load vs. settlement for total, shaft, and base load cases. The working load is indicated on the graph.](image-url)
Pile Settlement

Computational approaches for assessing pile settlements are now available for use in the commercial design office in the form of computer programs:

- PIGLET Closed form elastic continuum equations
 Randolph (1980)

- CEMSET Simplified hyperbolic functions for the pile base and shaft
 Fleming (1992)

- PILSET Iterative approach based on Mindlin equations
 Poulos & Davis (1980) - Oasys Limited

- REPUTE Based on boundary elements
Example PILE Settlement Calculation

Diagram showing the settlement calculation with a maximum settlement of 6.5mm.
Example CEMSET Settlement Calculation

Shaft Shortening

Total Qs

Qb

5.3mm

<table>
<thead>
<tr>
<th>Qw</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Pile Load Test – Working to DVL + 50%
Load Test Back Analysis

Bearing capacity calculation based on soil parameters and CEMSET settlement calculation used to back analyse load test

Very good match
Negative Shaft Friction

Original ground surface

SOFT ALLUVIAL CLAYS

STIFF CLAYS

Raised ground surface

Consolidation settlement of soft ground

FILL

Neutral plane

Applied load

\(P_a + P_{\text{neg}} \)

Pile resistance

\(Q_s + Q_b \)

\(Q_s \)

\(Q_b \)
Negative Shaft Friction

NSF occurs when ground settlement exceeds pile settlement at any point.

Complex problem that cannot be designed by load test.

Need soil-structure interaction software.
Negative Shaft Friction

- EC7 has little to say about NSF
- No consensus between Designers
- Two possible approaches:
 - An SLS problem
 - Analyse the effect of ground settlement on the pile and estimate pile settlements and stresses
 - Complex analysis
 - Requires suitable software
 - Time consuming
Negative Shaft Friction

- A ULS problem
 - Estimate the potential additional load due to the settling soil
 - Treat as an extra permanent load
 - Simple calculation but not really correct
 - Most common method
- Does it comply with EC7?
Negative Shaft Friction

Typical software output for SLS analysis:

100mm ground settlement
10mm pile settlement
Horizontal Loading

- It is possible to carry out ULS horizontal load analyses but these depend on the assumed mechanism of behaviour.

- Long piles - free or fixed head
- Short piles - free or fixed head
- Short piles - translation

- Rotation
- Fixity at depth
- Earth pressures
Horizontal Loading

- Resistance to horizontal load:
 - Short piles: Lateral resistance of ground
 - Longer piles: Combination of ground strength & stiffness, pile stiffness and restraint conditions
- EC7 gives only general guidance:
 - Check inequality:
 - Ed is the horizontal load action effect
 - Rd is the resistance to horizontal load
- Not much practical help
Horizontal Loading

- For horizontal load design, STR limit state usually governs – the capacity of the pile section to carry bending moments
- Many Designers use equilibrium methods (Broms)
- Recent BS8004 (2015) promotes this approach but this is a poor model of the behaviour of most piles and it ignores SLS
- Soil-structure interaction software (e.g. ALP or WALLAP)
- Traditional approach: SLS analysis (unfactored)
- Apply partial factor to moments and shear forces, typically 1.4 to 1.5 and compare with structural strength
Horizontal Loading

- Note that real piles have flexural stiffness (EI)
- Horizontal behaviour is controlled by head fixity at the cap

Free head

Larger pile movements

BM_{max}

Fixed head

BM_{max}

Fixity at depth

Smaller BM
Horizontal Loading – Head Fixity

- Head fixity can be modelled as shown
- Larger pile groups have much larger fixity
- Bending moment is usually maximum at the connection to the pile cap

![Diagram of pile cap head fixity](image)

\[
M = P S \\
\Delta = \theta S/2 \\
\theta = \frac{k S^2}{4} \text{ kNm/radian} \\
P = k \Delta
\]

Combine to give moment stiffness per pile.
Horizontal Loading

- EC7 allows soil-structure interaction software to be used:
 - Options in UK are ALP or WALLAP
 - Pile is modelled as beam elements
 - Ground is modelled as springs
 - Analysis can be based on factored horizontal actions or factored soil strength (and stiffness)
 - Best to analyses without factors
 - Apply partial factors to BM & SF
Horizontal Loading

- ALP uses Brinch Hansen k_q and k_c coefficients
Horizontal Loading

- How do we apply EC7 to these types of analysis?
- Strictly, to comply with EC7, three analyses are required:
 - ULS combinations 1 & 2 – calculate design bending moments and shear forces
 - SLS – consider pile deflection
- ULS combination 2 requires factored soil strength
- How do we deal with soil stiffness when using factored soil strength?
- Risk of large number of analyses
Example ALP Horizontal Load Analysis

Bending Moment -187kNm

Soil Pressure

Bending Moment 121kNm

Pile Deflection 14.6mm

SLS - Unfactored
Example ALP Horizontal Load Analysis

Bending Moment
-264kNm

Pile Deflection 22.1mm

Soil Pressure

Bending Moment
164kNm

ULS – A2/M2 Factor Sets
Example ALP Horizontal Load Analysis

Bending Moment
-281kNm

Pile Deflection 22.0mm

Soil Pressure

Bending Moment 181kNm

ULS – A1/M1 Factor Sets
Example ALP Horizontal Load Analysis

<table>
<thead>
<tr>
<th></th>
<th>SLS No factors</th>
<th>ULS A2/M2</th>
<th>ULS A1/M1</th>
<th>ULS A1/M1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Factor γ_m</td>
<td>1.25</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Horizontal G_k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Horizontal Q_k</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Partial Factor γ_G</td>
<td>1.0</td>
<td>1.35</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Partial Factor γ_Q</td>
<td>1.3</td>
<td>1.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Horizontal G_d</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Horizontal Q_d</td>
<td>125.0</td>
<td>162.5</td>
<td>187.5</td>
<td>125.0</td>
</tr>
</tbody>
</table>

At Pile Head

- Calculated Moment M: -187, -264, -281, -187 kNm
- Partial Factor γ: 1.0, 1.0, 1.5
- Design Moment M_d: -264, -281, -281 kNm

Peak at Depth

- Calculated Moment M: 121, 164, 181, 121 kNm
- Partial Factor γ: 1.0, 1.0, 1.5
- Design Moment M_d: 164, 181, 182 kNm

ULS A1/M1* - Partial factors applied to effect of actions

ULS – A1/M1 Factor Sets
Structural Design of Piles

- Not EC7 - But pile designers must be aware
Structural Design of Piles

- Based on BS EN 1992-1-1 (EC2 Part 1.1.)
- Use the calculated design compression and tension loads combined with design bending moments and shear forces
- Compression loads are sometimes ‘favourable’
- Cast in-situ piles treated as circular columns
- Precast piles generally square columns
- In most cases the piles are fully restrained and will not fail by buckling even in soft or loose ground
Structural Design of Piles

- EC2 contains clauses which are specific to cast in-situ piles:
 - Partial factor on concrete strength increased by 10%
 - Design pile diameter 95% of nominal pile diameter
- These clauses were not required by BS 8110 – EC 2 is more conservative!
- Shear calculation differs significantly from BS 8110
- In some cases more longitudinal steel is needed due to shear.
Structural Design of Piles

- EC2 requirements for maximum bar spacing conflict with piling execution codes
- In some cases small diameter piles are not buildable
- Minimum 6 bars
- Not general UK practice for axially loaded piles
- Steel lap lengths can be excessive
Design Example

- 600mm CFA bored preliminary test pile
- Installed from a reduced level dig (3.5m below original level)
- Pile bored to 20.6m depth
- Founded in very weak Chalk
- Maximum test load 5,200kN at 61.3mm (Approx 10% D)
- Example design based on:
 - Calculation
 - Static load test
Design Actions F_d for Design Example

- Example calculation

 Permanent Load $G_k = 1400\text{kN}$
 Variable Load $Q_k = 600\text{kN}$

- Factor Set A1

 EC7 Design Action $F_d = 1400 \times 1.35 + 600 \times 1.5$

 EC7 Design Action $F_d = 2790\text{kN}$

- Factor Set A2

 EC7 Design Action $F_d = 1400 \times 1.0 + 600 \times 1.3$

 EC7 Design Action $F_d = 2180\text{kN}$
Geotechnical Design to EC7
13 January 2017

Geological Section

- Original Ground Level Approx. 12.9 mOD
- Loose to medium clay & gravel FILL (Made Ground)
- Very soft PEAT (Alluvium)
- Dense gravelly SAND (Terrace Gravels)
- Structureless CHALK (Upper Chalk)
- CHALK (Upper Chalk)
Insitu SPT Data
Insitu CPT Data
Insitu CPT Data

Structureless Chalk

Very Weak Chalk

Geotechnical Design to EC7
13 January 2017
Pile Load Test Results

Resistance at 10% diameter 5,200kN

Great Blakenham
Suffolk
29 to 31 March 2012

F.K. LOWRY PILING LTD

Maximum Displacement = 61.29mm
Residual Displacement = 56.23mm
Design Parameters for Design Example

<table>
<thead>
<tr>
<th>Soil Description</th>
<th>Top Level mOD</th>
<th>Soil Properties</th>
<th>Design Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular BACKFILL</td>
<td>9.4</td>
<td>$\phi' = 35^\circ$</td>
<td>$\tan \delta = 0.7$ $k_s = 1.0$</td>
</tr>
<tr>
<td>Very soft PEAT</td>
<td>8.4</td>
<td>$c_u = 25$</td>
<td>$\alpha = 0.6$</td>
</tr>
<tr>
<td>Dense gravelly SAND</td>
<td>7.4</td>
<td>$\phi' = 35^\circ$</td>
<td>$\tan \delta = 0.7$ $k_s = 1.0$</td>
</tr>
<tr>
<td>Structureless CHALK</td>
<td>2.9</td>
<td>$N = 5$ bl/300mm</td>
<td>$q_s = \sigma_v' \beta$ $\beta = 0.8$</td>
</tr>
<tr>
<td>Weak Chalk</td>
<td>-5.0</td>
<td>$N = 15$ bl/300mm</td>
<td>$q_s = \sigma_v' \beta$ $\beta = 0.8$ $q_b = 200$ N</td>
</tr>
<tr>
<td>Enhanced base</td>
<td></td>
<td>$N = 40$ bl/300mm</td>
<td>$q_b = 8,000$ kPa</td>
</tr>
</tbody>
</table>
Pile Bearing Capacity

<table>
<thead>
<tr>
<th>Pile System</th>
<th>Cfa bored</th>
<th>Diameter</th>
<th>600 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Soil</td>
<td>Shaft Stress</td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>Type</td>
<td>Top (kPa)</td>
</tr>
<tr>
<td>Granular BACKFILL</td>
<td>9.40</td>
<td>Drained</td>
<td>0</td>
</tr>
<tr>
<td>Very soft PEAT</td>
<td>8.40</td>
<td>Undrained</td>
<td>15</td>
</tr>
<tr>
<td>Dense gravelly SAND</td>
<td>7.40</td>
<td>Drained</td>
<td>11</td>
</tr>
<tr>
<td>Structureless CHALK</td>
<td>2.90</td>
<td>Chalk</td>
<td>50</td>
</tr>
<tr>
<td>Very weak CHALK</td>
<td>-5.00</td>
<td>Chalk</td>
<td>114</td>
</tr>
</tbody>
</table>

Pile Toe Level -11.20 mOD NEGATIVE SHAFT FRICTION 0 kN
Base stress 3000 kPa SHAFT CAPACITY 3123 kN
END BEARING CAPACITY 848 kN
ULTIMATE CAPACITY 3971 kN

Maintained load test to ultimate capacity EC7 Model Factor 1.2

Characteristic Shaft Resistance Rsk 2603 kN
Characteristic End Bearing Resistance Rbk 707 kN
Characteristic Pile Resistance Rk 3309 kN

Settlement verified by load test EC7 Resistance Factors
Shaft Factor 1.4
End Bearing Factor 1.7
Shaft Tension Factor 1.7

UK National EC7 DESIGN RESISTANCE Rcd 2275 kN
Annex to EC7 EC7 DESIGN TENSION RESISTANCE Rtd 1531 kN
Factor Set R4 PILE LENGTH 20.60 m

Calculation still on low side

Bearing Capacity – \(\beta 0.80 \)
PILE BEARING CAPACITY

<table>
<thead>
<tr>
<th>Soil Description</th>
<th>Cfa bored</th>
<th>Diameter</th>
<th>Top Stress</th>
<th>Base Stress</th>
<th>Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(kPa)</td>
<td>(kPa)</td>
<td>(kN)</td>
</tr>
<tr>
<td>Granular BACKFILL</td>
<td>9.40</td>
<td>Drained</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Very soft PEAT</td>
<td>8.40</td>
<td>Undrained</td>
<td>15</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>Dense gravelly SAND</td>
<td>7.40</td>
<td>Drained</td>
<td>11</td>
<td>44</td>
<td>234</td>
</tr>
<tr>
<td>Structureless CHALK</td>
<td>2.90</td>
<td>Chalk</td>
<td>50</td>
<td>114</td>
<td>1223</td>
</tr>
<tr>
<td>Very weak CHALK</td>
<td>-5.00</td>
<td>Chalk</td>
<td>114</td>
<td>165</td>
<td>1632</td>
</tr>
</tbody>
</table>

Step 1 Model Factor

Step 2 Resistance Factors

- Characteristic Shaft Resistance R_s = 2603 kN
- Characteristic End Bearing Resistance R_b = 1885 kN
- Characteristic Pile Resistance R_k = 4487 kN

Maintained load test to ultimate capacity

- EC7 Model Factor = 1.2

EC7 Resistance Factors

- Shaft Factor = 1.4
- End Bearing Factor = 1.7
- Shaft Tension Factor = 1.7

- UK National Annex to EC7
- EC7 DESIGN RESISTANCE R_{cd} = 2968 kN
- EC7 DESIGN TENSION RESISTANCE R_{td} = 1531 kN
- PILE LENGTH = 20.60 m

Enhanced Base

- BC calculation down to here is the same as we have always carried out
- No change for EC7

- $R_{c:d} = 2,968$ kN
Shaft Shortening

Measured Load-Settlement

Shaft Friction Q_s

End Bearing Q_b

Total Q_{ult}

CEMSET Fit to Test Results

5,385kN

3,123kN

2,262kN
Design Based on Calculation

- Calculated design resistance $R_{c;d}$

 $$R_{b;k} = \frac{2,262}{1.2} = 1,885\text{kN} \quad R_{s;k} = \frac{3,123}{1.2} = 2,603\text{kN}$$

 $$R_{c;d} = \left[\frac{1,885}{1.7} + \frac{2,603}{1.4} \right] = 2,968\text{kN}$$

- Based on calculation with the best CEMSET fit to the measured load-settlement behaviour
Design Based on Static Load Tests

- Design resistance $R_{c;d}$

\[
R_{c;k} = \min \left[\frac{\text{Mean} 5,200\text{kN}}{1.55} \right] \quad \text{or} \quad \left[\frac{\text{Minimum} 5,200\text{kN}}{1.55} \right]
\]

\[
R_{c;k} = 3,355\text{kN}
\]

\[
R_{c;d} = \left[\frac{3,355}{1.7} \right] = 1,974\text{kN}
\]

- Note that this method is based on the measured resistance at 10% of the pile diameter rather than the extrapolated ultimate capacity (about 5,400kN based on CEMSET)
Design Based on Static Load Tests

- Assuming say 3 pile load tests and a stiff/strong structure
 would allow a reduced correlation factor of 1.29 to be used
 giving $R_{c;d} = 2,371\text{kN}$
Comparison Between Design Methods

- Nominal pile load: 2,000kN
- EC7 Design Action: 2,180kN
- Design Resistance:
 - Based on Calculation: 2,275kN to 2,968kN
 - Based on Static Load Test: 1,974kN to 2,371kN
Conclusions – 1

- EC7 does not tell the Designer how to design piles but does give rules and procedures to be followed
- EC7 has complicated pile design with the introduction of numerous partial factors; load factors, combination factors, material factors, resistance factors, model factors and correlation factors
Conclusions – 2

- More design effort is required to design to EC7
- In some respects EC7 is more conservative
- There are some problem areas which must be resolved
- **BUT** EC7 does provide a more logical design framework
- Engineering judgement must not be suspended
Conclusions – The Future

- Discussions are taking place on future revisions to Eurocode 7 and its UK National Annex
- So far, EC7 has failed to provide a ‘harmonized technical specification’ – three design approaches are permitted
- Can this be resolved?
- EC7 does not specify a value for the model factor γ_{Rd}
- Are the UK values too conservative?
- The shortcomings and inconsistencies are being addressed
- Next version in 2020
Thanks for Your Attention